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We have been studying the technologizing and digital-
izing skills of the medical professionals in the medical
diagnostics and therapeutics. The concept of technol-
ogizing and digitalizing medical skills involves extract-
ing functions in medical professional skills and recon-
structing and implementing these extracted functions
in the mechanisms, controllers, and image-processing
algorithms of the medical support system. In this pa-
per, we focus on the kidney stone extraction skills of
medical professionals by utilizing robot vision technol-
ogy, and discuss a methodology for technologizing and
digitalizing medical diagnostic and therapeutic skills
for a non-invasive ultrasound theragnostic system.

1. Introduction

Information and Robot Technology (IRT) is drawing
increasing attention in the technologizing and digitalizing
of medical professional skills. In fields such as manu-
facturing, high-precision tasks, not possible with human,
skills have been already realized by industrial robots. The
medical field is thus expected to advance with progress in
the development of medical robots able to provide diag-
nosis and therapy that are much more precise than those
of conventional medical professionals.

This paper focuses on robot vision technology for tech-
nologizing and digitalizing medical diagnostic and thera-
peutic skills for the Non-Invasive Ultrasound Theragnos-
tic System (NIUTS) that compensates for movement by
tracking and following the area to be treated by stereo ul-
trasound imaging while irradiating the affected area with
High Intensity Focused Ultrasound (HIFU).

In HIFU, ultrasound beams are generated and focused
onto the small region by utilizing the spherical transduc-
ers. It thus becomes possible to concentrate the energy
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Fig. 1. (a) High-intensity focused ultrasound (HIFU). (b)
Destruction of kidney stone by HIFU.

onto a small region in the body to treat an affected area in
focal volume without damaging surrounding or overlying
tissues. HIFU, as a non-invasive technique, is an attractive
alternative to current abdominal and endoscopic surgery
(Fig. 1(a)).

Areas can be selectively diagnosed and treated non-
invasively using HIFU using the same principle as in con-
ventional ultrasound. Ultrasound propagates harmlessly
through living tissue. However, if an ultrasound beam is
focused too tightly, the energy in the focal volume may
cause local heating [1].

Our proposed system uses focused ultrasound to de-
stroy tumors and stones without damaging healthy tissue.

“Theragnostics,” a compound “therapeutics” and “di-
agnostics,” is achieved by tracking and following the af-
fected area – kidney stones in the present study – in order
to compensate for movement due to the patient’s respira-
tion and other causes.

A number of studies have been conducted since Lynn
et al. first demonstrated the potential of HIFU for use
in medical applications [1, 2]. One example of a medi-
cal application of HIFU is the non-invasive destruction of
kidney stones (Fig. 1(b)) by using the energy generated
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by cavitation. HIFU irradiation has an advantage in that
any debris produced from such stones is small enough to
prevent complications with adjacent organs [3].

The JC HIFU R© system is widely used in clinical prac-
tice [4, 5]. A total of 19 devices for clinical use were used
to treat 1,050 patients who had a variety of tumors [6, 7].
There was no compensation, however, for the movement
of organs in the affected area, which is primarily caused
by respiration. Preventing such movement while irradiat-
ing an affected area with focused ultrasound is generally
difficult for both the physician and the patient.

Related to research on technologizing and digitalizing
skills, the concepts of artificial skill [8], hyper human [9],
and digital human [10] have been proposed, and studies
related to technologizing and digitalizing of skills are in-
creasing. In the medical field, Mayer [11] and Zong [12]
studied automatic suturing aiming at technology transfer.
We have developed the Remote Ultrasound Diagnostic
System (RUDS) based on technologizing and digitalizing
technology [13, 14].

This paper is organized as follows: the concept of tech-
nologizing and digitalizing medical skills is proposed in
Section 2.1. The project roadmap of technologizing and
digitalizing medical skills for a NIUTS is also illustrated
in this section.

Functional requirements are determined in Section 2.2.
In Section 2.3, a framework for the NIUTS is constructed
based on the functional requirements described in Sec-
tion 2.2. In Section 2.4, we discuss the required servoing
precision and clarify problems in visual motion tracking
of the target kidney stone in the body by ultrasound im-
ages in the proposed NIUTS.

In Section 3, we propose a method to technologize
and digitalize the stone extraction skill of the target kid-
ney stone by utilizing the following two features: (i) the
stone’s acoustic impedance higher than that of surround-
ing tissues. (ii) The acoustic shadow generated by the
stone.

In Section 4, we conduct experiments in which the
phantom/swine kidney stone is extracted to confirm the
effectiveness of the proposed method. We conclude the
present work in Section 5.

2. Concept of Technologizing and Digitaliz-
ing Medical Skills and System Construction
Methodology

2.1. Concept of Technologizing and Digitalizing
Medical Skills

The concept proposing technologizing and digitalizing
of medical skills involves 3 steps: (i) extracting med-
ical diagnostic and therapeutic primitive functions, (ii)
decomposing and reconstructing (structuring) these ex-
tracted primitive functions considering implementation,
and (iii) implementing reconstructed functions in mech-
anisms, controllers, and image processing algorithms as
functions, as shown in Fig. 2.
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Fig. 2. Concept of technologizing and digitalizing of medi-
cal skills.

Figure 3 shows an overview of the project roadmap for
technologizing and digitalizing medical skills for a NI-
UTS. Among the steps in Fig. 3, we focus on the kidney
stone extraction skills of medical professionals. Steps and
basic technologies related to this paper are highlighted by
red frames in Fig. 3.

It is important both to imitate medical professional
skills and to take novel approaches as needed to add and
implement functions enhancing the quality of medicine,
e.g., high-speed and high-precision motion should be re-
alized by highly rigid mechanisms.

To do so requires five basic technologies: (a) safe con-
tact motion technology with the body, (b) mechanism
design technology, (c) extracting and restructuring tech-
nology for skill, (d) switching control technology based
on medical diagnostics and therapeutics, (e) robot vision
technology for theragnostics. This paper focuses on this
fifth technology in the NIUTS.

2.2. Structuring Functional Requirements
Clarification of functional requirements is important

in order to realize an efficient system. Fig. 4 shows an
overview of the structuring – decomposition and recon-
struction – of functional requirements. The functions re-
quired for a NIUTS are categorized as

(FR-1) diagnostic functions or

(FR-2) therapeutic functions.

Diagnostic functions (FR-1) are further categorized
into the following five subcategories:

(FR-1.1) moving the probe to the affected area,

(FR-1.2) extracting the affected area,

(FR-1.3) focusing the HIFU focus onto the ap-
pointed position in the affected area,

380 Journal of Robotics and Mechatronics Vol.24 No.2, 2012



Technologizing and Digitalizing Medical Professional Skills

Mechanical and 
control parts

Integration

Planning diagrams

System concepts

Parameter analyses

Decompose and 
reconstruct 
functions

Extract functions  in 
medical diagnostics 

and therapeutics

Medical 
professionals

Patients
Diagnostic and 

therapeutic 
experiments

Design guidelines 
determination

Improve
controllers and 
mechanisms

Modeling of patients 
and affected areaBasic control law

Advanced control 
regulation

Adjust control 
parameters

HIFU irradiation and 
robot motion control in 

accordance with 
theragnostic situation

Recognize patients 
and affected area

Trajectory planning

Step for reseach
and development. 
Main fruits

Step for reseach
and development

Evaluate functionsFunction 
implementation

Improve 
functions

design 
guidelines

Control method 
for high
tracking 

performance

Control method 
for continuous 

motion System 
implementation

Integrate 
diagnostics and 
therapeutics

Robust control  by 
utilizing quasi-

periodical 
respiratory motion Robust recognition 

of medical images 
by utilizing medical 

knowledge

Basic image 
recognition

method

Image processing

Modeling of 
medical tasks

Target recognition  
by image intensity 

and texture

Recognize 
medical tasks

Robust detection 
of affected area 

by medical 
knowledge

Robust image 
tracking by utilizing 

quasi-periodical 
respiratory motion

Diagnostic skills

Water
Transducer

Ultrasound

Affected 
area

Body

Non-invasive 
ultrasound 
therapeutic skills

Safe 
contact 
motion

technology

Mechanism 
design 

technology

Structuring 
technology 

for skills

Switching 
control technology
based on medical 

theragnostics

Robot vision
technology for 
theragnostics

Realization of system  which can diagnose and treat affected 
area non-invasively with safety motion for human body

Enhance
functions

Non-Invasive Ultrasound Theragnostic SystemReduce the 
load of medical
professionals

Safety and 
reliability
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(FR-1.4) tracking and following the affected area,

(FR-1.5) monitoring the affected area.

Therapeutic functions (FR-2) are further categorized
into the following two subcategories:

(FR-2.1) varying the HIFU irradiation power,

(FR-2.2) terminating HIFU irradiation.

Tracking and following the affected area (FR-1.4) is
further categorized into the following two subcategories:
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configuration and acquired ultrasound images for kidney stone model in ultrasound kidney phantom model.

(FR-1.4.1) compensating for periodic motion of the
kidney stone,

(FR-1.4.2) compensating for non-periodic motion
of the kidney stone.

Next, functional requirements should be achieved by
considering how the system will be implemented. As a
result, decomposed functions are reconstructed to obtain
the following three functions:

(R-FR-1) moving the position of HIFU focus,

(R-FR-2) obtaining the state of the affected area
and displaying this information to the medical pro-
fessional,

(R-FR-3) controlling HIFU irradiation.

In the present paper, we propose a technologizing and
digitalizing technology of medical diagnostic skills re-
lated to (FR-1.2)–(FR-1.4) in the following sections.

2.3. Implemented System Configuration
An NIUTS was constructed (Fig. 5) based on required

functions as described in Section 2.2. The overview and
the block diagram of the system is shown in Figs. 5(a)
and (b). Stereo diagnostic images are acquired using two
diagnostic probes. These images are then used to deter-
mine a 3D positioning data of the affected area and the
focus position of the HIFU. In control, the focus point
tracks the kidney stone using 3D positioning data. HIFU
irradiates the kidney stone using a function generator, an
amplifier, and a transducer. HIFU irradiation parameters
are given in Reference [3].

The robot has a spherical piezoelectric transducer and
two ultrasound probes (Figs. 5(a) and (c)), one of which
is located in the center of the piezoelectric transducer and
the other of which is located on the lateral side of the
piezoelectric transducer. These two probes satisfy the fol-
lowing two requirements:

(i) The focus of the HIFU, which is irradiated by
piezoelectric transducers, is located on the image
planes of both probes (Fig. 5(a)).

(ii) The image planes of probes are mutually per-
pendicular (Fig. 5(c)).

The two ultrasound image planes are shown in
Fig. 5(c). The stone appears as bright regions in the ul-
trasound images at left and right. The ultrasound image
on the left is acquired by the probe in the center of the
piezoelectric transducer, and the ultrasound image on the
right is acquired by the probe on the lateral side of the
piezoelectric transducer.

To acquire the proper diagnostic images of the affected
area and irradiate HIFU onto target kidney stones, it is
important to ensure stable contact status between the tip
of the theragnostic system and the affected area. To do
so, we implemented a water tank with a silicon membrane
between the tip of the theragnostic system and the affected
area.

The kidney stone is tracked by imaging the left and
right ultrasound images based on the Matrox Imaging
Library (MIL 8.0) processing cycle, which involves the
following three steps: 1) grabbing ultrasound images, 2)
processing grabbed images to enhance image quality for
tracking the kidney stone, and 3) detecting the 3D location
of the stone.

The target position is obtained by the ultrasound sys-
tem at a limited sampling rate of 100 Hz. In contrast, the
XYZ-stage is controlled at a rate of 1 kHz at a positioning
resolution of 5 nm. The specifications of the controller
are reported in reference [15].

2.4. Required Servoing Precision and Problems
with Visual Motion Tracking Using Ultra-
sound Images

In this section, we discuss the required servoing pre-
cision, together with problems with visual motion track-
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ing using ultrasound images in the special theragnostic
system. We first discuss the required servoing precision,
which should be smaller than the radius of the irradiated
object:

Ed < krr̄stone . . . . . . . . . . . . . (1)

where r̄stone is the average radius of the irradiated object,
and kr is a proportionality constant. The irradiated object
is a kidney stone model [16] having a diameter of approx-
imately 10 mm. The target tracking precision is therefore
set to 1 mm (kr = 10). The HIFU irradiated region (lesion)
is ellipsoidal, with a long axis of approximately 10 mm
and a short axis of approximately 1 mm. The resolution of
the ultrasound diagnostic image is approximately 0.3 mm
when a 3-MHz probe is applied.

We now discuss the problems and solutions associated
with visual motion tracking of the target kidney stone by
using ultrasound images (Fig. 6). Servoing error increases
when Image Quality (IQ), for visual servoing of the target
kidney stone, is decreased. Noise factors that deteriorate
IQ are four factors, as follows: (i) surrounding tissues,
which have high acoustic impedance, (ii) acoustic shad-
ows, which are generated by high acoustic impedance tis-
sues such as lib bones. (iii) Bubbles, which are generated
by HIFU irradiation, and (iv) blur noise by oscillation in
mechanical systems. Servoing error causes an image to
change, which in turn increases servoing error. This neg-
ative spiral causes servoing performance to become in-
creasingly worse. This, however, also increases the possi-
bility of dramatically enhancing servoing performance if
performance can be improved by some method that will
result in a positive spiral.

In order to solve this problem, we consider two ap-
proaches. The first approach is to minimize servoing er-
ror. This approach attempts to enhance both the efficiency
of therapy and the safety of the patient. The second ap-
proach is to reduce the effect of servoing error. This
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Fig. 7. Automatic thresholding of intensity to extract model
kidney stone.

approach primarily contributes to safety enhancement by
avoiding injuring healthy tissues surrounding the affected
area.

With respect to the first approach, we developed two
solutions, not only to enhance the servoing performance
in order to realize efficient therapy but also to enhance
the safety of the patient [15, 17]. The first solution is ro-
bust detection of the target kidney stone position based
on information in the ultrasound image [17]. The second
solution is a controller that compensates for periodic res-
piratory motion of the affected area [15]. Here, we pro-
pose a robust kidney detection method by utilizing the fol-
lowing two features: (i) the higher acoustic impedance of
the target kidney stone, which exceeds that of surround-
ing tissues, (ii) the acoustic shadow that is generated by
the kidney stone. Medical professionals utilize the above
information on the target kidney stone.

With respect to the second approach, we developed a
solution to control HIFU irradiation power in accordance
with servoing error in order to enhance patient safety [17].

3. Technologizing and Digitalizing of Kidney
Stone Extraction Skill

3.1. Semiautomatic Thresholding of Intensity to
Extract Kidney Stone Model

In this section, we propose a semiautomatic threshold-
ing method of pixel intensity to extract the kidney stone
model (Fig. 7). We first calculate smoothed histogram
H(x) from the input ultrasound image, which incorpo-
rates the kidney stone. We then introduce the General-
ized Rayleigh curve R(x) as a model of the typical back-
ground of the target kidney stone in the ultrasound image.
Specifically, the Generalized Rayleigh curve is defined as
follows:

R(x|σ ,Sc,x0) = Sc
x− x0

σ2 exp
(−(x− x0)2

2σ2

)
. (2)

Here, σ is a parameter to adjust curve width, Sc is a scale
parameter, and x0 is a translation parameter. The Gener-
alized Rayleigh curve is a typical background model of
the ultrasound image and fitted to the histogram of the in-
put ultrasound image based on the peak and the inflection
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Table 1. Acoustic impedance.
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Fig. 8. Kidney stone decision by acoustic shadow.

point.
We then calculate subtraction Su(x).

Su(x) = H(x)−R(x) . . . . . . . . . . (3)

We obtain threshold candidate value xthresh to extract the
kidney stone.

xthresh = arg min{Su(x) ≥ R(x)} . . . . . . (4)

Practically, we apply (and adjust by trial and error, if
required) the abovementioned threshold candidate value
xthresh as an initial value to extract the model kidney stone.

3.2. Determination of Kidney Stone by Acoustic
Shadow

Kidney stones are very hard tissues and have relatively
high acoustic impedance, as stated in Table 1 [18]. Most
incident ultrasound therefore cannot pass through the kid-
ney stone. This makes an acoustic shadow behind the
kidney stone. In this section, we propose a method to
determine from an acoustic shadow whether the extracted
region is actually the stone (Fig. 8).

In advance, a scan line that passes through the kidney
stone candidate and two scan lines that pass on either side
of the candidate are obtained. Acoustic shadow factor
fshadow is defined by the intensity of the scan lines’ por-
tion posterior to the candidate.

fshadow =

j= jed

∑
j= jst

I(iC, j)

j= jed

∑
j= jst

0.5(I(iL, j)+ I(iR, j))

. . . . (5)

Here, I(iC, j) is the intensity of the j-th datum on the iC-th
scan line, which passes through the center of the two tan-
gential scan lines – iL-th scan line passing on the left, and
iR-th scan line passing on the right, which pass on both
sides of the candidate.
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Fig. 9. Extraction result of model kidney stone in the phan-
tom kidney model.

4. Experiments

4.1. Phantom Experiments
Here, we explain the results of kidney stone model ex-

traction experiments in the ultrasound kidney phantom
model (Fig. 9(a)). The purpose is to confirm the effec-
tiveness of the proposed stone extraction method. Specif-
ically, we input the kidney stone model into the kidney
phantom model and confirm whether we can extract the
model kidney stone or not. Fig. 9(b) shows that the
threshold value is automatically determined properly to
extract the target kidney stone model. Figs. 9(c) and (d)
show that stone positions in ultrasound images from the
center and lateral ultrasound probes are detected properly
by the proposed method. The recognized acoustic shadow
is also shown in Figs. 9(c) and (d).

4.2. Ex-Vivo Experiments
Here, we explain the results of kidney stone model

extraction experiments using an extracted swine kidney
(Figs. 10(a)–(d)). The purpose is to confirm the effective-
ness of the proposed stone extraction method. Specifically
we input the kidney stone model into the swine kidney and
confirm whether we can extract the kidney stone model or
not.

It is also confirmed that the position of the kidney stone
model is identified properly by the proposed method. It
is confirmed that ultrasound images are more noisy in
the extracted kidney than in the phantom kidney model.
Specifically, surrounding tissues, which have high acous-

384 Journal of Robotics and Mechatronics Vol.24 No.2, 2012



Technologizing and Digitalizing Medical Professional Skills

(a) Extracted swine kidney

Stone

Acoustic
shadow

position

(c) Extraction result of center
probe image

Automatic determined
threshold value

(b) Automatic thresholding
result of pixel intensity

(d) Extraction result of lateral
probe image

Fig. 10. Extraction result of model kidney stone in the ex-
tracted swine kidney model.

tic impedance, mainly make ultrasound images noisy,
compared with the phantom kidney model.

Although ultrasound images are noisy, we could ex-
tract the model kidney stone alone in the swine kidney,
which has confusing surrounding tissues. We conducted
the same experiments with 3 extracted swine kidneys and
confirmed that we could extract the kidney stone model
properly with the proposed extraction method.

5. Conclusions

We have presented the concept of technologizing and
digitalizing medical skills. We have shown a roadmap of
technologizing and digitalizing medical skills for an NI-
UTS. The structuring of required functions has been dis-
cussed and problems encountered in servoing the target
kidney stone clarified.

We have proposed a method to technologize and dig-
italize the extraction skill of the target kidney stone by
utilizing the following two features: (i) the higher acous-
tic impedance of the target kidney stones which exceeds
that of surrounding tissues and (ii) the acoustic shadow
generated by the kidney stone.

Medical professionals utilize these features of the tar-
get kidney stone in their works. We have conducted kid-
ney stone model extraction experiments using phantom
and swine kidneys and confirmed the effectiveness of the
proposed kidney stone extraction method.
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